3D printing for membrane separation, desalination and water treatment

The review article '3D printing for membrane separation, desalination and water treatment' has been published in Elsevier journal Applied Materials Today.

Abstract

Additive manufacturing or commonly known as 3D printing is driving innovation in many industries and academic research including the water resource sector. The capability of 3D printing to fabricate complex objects in a fast and cost-effective manner makes it highly desirable over conventional manufacturing processes. Recent years have seen a rapid increase in research using 3D printing for membrane separation, desalination and water purification applications, potentially revolutionizing this field.

This review focuses on recent advancements in 3D-printed materials and methods for water-related applications including developments in module spacers, novel filtration and desalination membranes, adsorbents, water remediation, solar steam generation materials, catalysis, etc. The emergence of new 3D printers with higher printing resolution, better efficiency, faster speed, and wider material applicability has garnered more interest and can potentially reshape research and development in this field. The promising potential, challenges and future prospects of 3D printing, additive manufacturing, and materials for water resource and treatment-related applications are all discussed in this review.

Access the complete article on ScienceDirect.