Dynamic membrane for micro-particle removal in wastewater treatment

The research paper 'Dynamic membrane for micro-particle removal in wastewater treatment: Performance and influencing factors' has been published in Elsevier journal Science of The Total Environment.


Dynamic membranes (DMs) have been of great interest in recent years because they can reduce energy consumption and costs during wastewater treatment. Dynamic membranes are a promising technology for the removal of low-density, non-degradable micro-particles, such as plastics, which are an increasingly prevalent wastewater contaminant. These micro-particles are not easily removed via conventional sedimentation and result in increased operation and maintenance costs in downstream unit processes. In this study, DMs were formed on a 90 μm supporting mesh through filtration of a synthetic wastewater. The impact of influent flux (solid flux) and influent particle concentration on DM performance was investigated. The effluent turbidity was reduced to <1 NTU after 20 mins of filtration, verifying the effective removal of micro-particles by the DM. Transmembrane pressure (TMP) and total filtration resistance increased linearly with filtration time, and were highly correlated (R2 > 0.998). TMP ranged from 80 to 180 mm of water head, and total filtration resistance ranged from 2.89 × 10−9 m−1 to 6.52 × 10−9 m−1 during DM filtration. In general, an increase in influent flux and influent particle concentration corresponds with increasing TMP and filtration resistance, as well as a rapid reduction in effluent turbidity due to swift formation of a DM on the supporting mesh.

Read the full text on ScienceDirect.